the predator-prey discrete system codimention- 2 bifurcations

نویسندگان

چکیده مقاله:

A discrete predator-prey system is presented. We study the existence and stability of the fixed point system. The conditions of existence of Flip and Neimark-sacker bifurcation is the system are derived. By using numerical continuation methods and MatContM toolbox. We compute bifurcation curves of fixed points and cycles with periods up to 32 under variation of one and to parameters, and compute all condimension 1 and codimention 2 bifurcations that branch off from the detected codimension 2 bifurcation points. Numerical simulations confirm results and reveal future complet dynamical behaviours.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcations and dynamics of a discrete predator–prey system

In this paper, we study the dynamics behaviour of a stratum of plant-herbivore which is modelled through the following F(x, y)=(f(x, y), g(x, y)) two-dimensional map with four parameters defined by [Formula: see text] where x ≥ 0, y ≥ 0, and the real parameters a, b, r, k are all positive. We will focus on the case a ≠ b. We study the stability of fixed points and do the analysis of the period-...

متن کامل

Prey-Predator System; Having Stable Periodic Orbit

The study of differential equations is useful in to analyze the possible past or future with help of present information. In this paper, the behavior of solutions has been analyzed around the equilibrium points for Gause model. Finally, some results are worked out to exist the stable periodic orbit for mentioned predator-prey system.

متن کامل

Dynamics in a Discrete Prey-Predator System

The stability analysis around equilibrium of a discrete-time predator prey system is considered in this paper. We obtain local stability conditions of the system near equilibrium points. The phase portraits are obtained for different sets of parameter values. Also limit cycles and bifurcation diagrams are provided for selective range of growth parameter. It is observed that prey and predator po...

متن کامل

Hopf Bifurcations in a Predator-Prey System of Population Allelopathy with Discrete Delay

A delayed Lotka-Volterra two-species predator-prey system of population allelopathy with discrete delay is considered. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the asymptotic stability of the positive equilibrium is investigated and Hopf bifurcations are demonstrated. Furthermore, the direction of Hopf bifurcation and the stabil...

متن کامل

The Lotka-Volterra Predator-Prey Equations

One may find out the application‎ ‎of mathematics in the areas of ecology‎, ‎biology‎, ‎environmental‎ ‎sciences etc‎. ‎Mathematics is particulary used in the problem of‎ ‎predator-prey known as lotka-Volterra predator-prey equations.‎ ‎Indeed‎, ‎differential equations is employed very much in many areas‎ ‎of other sciences‎. ‎However‎, ‎most of natural problems involve some‎ ‎unknown functions...

متن کامل

On a Generalized Discrete Ratio-Dependent Predator-Prey System

Verifiable criteria are established for the permanence and existence of positive periodic solutions of a delayed discrete predator-prey model with monotonic functional response. It is shown that the conditions that ensure the permanence of this system are similar to those of its corresponding continuous system. And the investigations generalize some well-known results. In particular, a more acc...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 2

صفحات  0- 0

تاریخ انتشار 2022-05

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023